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A Physiological Approach to
Potassium Disorders

Overview of the relevant physiology
« Regulated K* secretion by the distal
nephron
- Renal and adrenal RAS and K*
nomeostasis
Hyper/hypokalemia
 Urinary indices and other diagnostic tests
» Clinical consequences
» Treatment of both disorders
- DD, of both disorders
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Potassium Intake
(100 mEqg/day)

RBC
“—2- (250 mEq)

Liver
(250 mEq)

Muscle __ " ECE 5.
(2650 mEq) — > %.__(70 mEq)

(300 mEq)

Potassium Excretion
(Kidney = 90 mEg/day; Stool = 10 mEqg/day)

Giebisch, AJP-Renal, 274, 1998




Factors Affecting K* Shift

Factor

Insulin

ﬂ-catecho\d m i

Acidosis
Alkalosis
Hyperosmolarity

Transmembrane K*
Shift
T uptake
T uptake
! uptake
! uptake
T uptake
T efflux




Secretion f

K intake

ALDO, ADH Reabsorption f
Flow A

Alkalosis K loss

Regulatory influences
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SR i pct { Y PCT — proximal convoluted tubule

/ | Lo _veogpborri TAL — thick ascending limb

J oy Ry,,,,,,,,,,,_ ! DCT - distal convoluted tubule
PCT \CNT g Z g CNT — connecting tubule

R\ 2 2 CC/T/ CCT - cortical collecting tubule
/ 26% ~<[_1 - MCD — medullary collecting duct
TAL MCD

<

Giebisch, AJP-Renal, 274, 1998



Na*, K* and H,O
Transport in
Principal Cells
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ENaC — epithelial Na*
channel

ROMK — secretory K*
channel

Maxi-K/BK — flow-
activated K* channel

-

H,0
Na’

Lumen (-)

Aquaporin-2 Aqp-4 <imm>» H,0

ENaC

N
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K*In Intercalated KNa“‘(
ENaC 3Na*; — Na'

Cells (IC) and (-)
Principal Cells (PC) K+:£: - 1
TAKE-HOME f H0—mm> AQP2  AGP34—mm»  —> H,0
MESSAGE: PC
K* excretion also e HikATPase e
iInvolves ? < -
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K* Secretion is Proportional to Distal Flow

50
High K
40 _
c Animals
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& — different
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S K* diets
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/@W K
0
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Distal Flow Rate, nl/min
Giebisch, AJP-Renal, 274, 1998
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K* Excretion is Dependent on Na* Intake

K Excretion, mmol/day+kg

10

(00)

Na Intake |29
100
10
4 5 5 7
Plasma [K], mM

Young et al, AJP-Renal, 246, 1984
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Na*, K" and H,O - \

Transport in H,0 Aquaporin-2 Aqp-4 <mmE> H,0
Principal Cells Na’ ENaC
Lumen (=) [(+)
TAKE-HOME
MESSAGE:

K* excretion requires
delivery of Na* to the
distal nephron, to
generate a lumen-
negative

potential difference
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K* Excretion as a Function of Plasma K*

and Circulating Aldosterone

K Excretion, mmol/day+kg

10

(0 0)

B x
Aldo

Normal
Aldo

/

0.4 x
Aldo

- 5 6

Plasma [K], mM

Adrenalectomized
with different levels
of aldo replacement

Young et al, AJP-Renal, 255, 1988
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Aldo-Dependent and Aldo—-Independent

Regulation of K* Excretion

Aldosterone
&

TAKE-HOME:

K* channels are mostly
regulated by K* intake,
whereas aldosterone
mostly regulates
ENaC, and thus the
“driving force”™ for K*
excretion.

Wang and Giebisch, Eur J Physiol, 2009



Causes of Hyperkalemia

ncreased intake

- K* supplements, diet, transfusions, iatrogenic
Decreased renal excretion

- Renal disease, particularly with type IV RTA

 DRUGS

« Adrenal insufficiency — hyperkalemia is not

universal

Intra — extracellular shifts

 Hyperosmolarity
* Insulinopenia

 Metabolic acidemia — but NOT with AG acidosis

* DRUGS — Amicar,
Artifactua
* In vitro hemolysis,

ysine, K* channel blockers

eukocytosis, thrombocytosis

» “pseudohyperkalemia”
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Drugs and the RAS
Renin €— NSAIDS, beta-blockers, CCBs

|

Angiotensin-I|
\LACE <— ACE inhibitors

Angiotensin-ll €<— ARBs

|

Kidostorong &— MLR inhibitors: Spironolactone,

\L canrenone, eplerenone, drospirenone

ENaC inhibitors: Amiloride,
triamterene, trimethroprim,
pentamidine, nafamostat

Renal Tubule <«—

)
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Take A Dietary History!

Consider both quantity and potassium content:
Highest content (>25 mmol/100 g)
* Dried figs, molasses, seaweed
Very high (>12.5 mmol/100 g)
- Dried fruits, nuts, avocados, bran cereals, wheat
germ, lima beans
High content (>6.2 mmol/100 g)
 Vegetables: spinach, tomatoes, broccoli, beets,
carrots, potatoes
 Fruits: bananas, kiwis, oranges, mangos, Kiwis
- Meats: ground beef, steak, pork, veal, lamb

)

Gennari, NEJM, 1998 17
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Hyporeninemic Hypoaldosteronism
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Hyperchloremic acidosis in ~50%, with urine pH
classically < 5.5

Hyperkalemia

! Plasma renin activity (PRA) and { aldosterone
! Response of PRA to stimuli such as furosemide
and captopril

Commonly with T age and { GFR, classically in
diabetics

Often hypertensive, with clinical T ECFV
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Causes of Hyporeninemic
Hypoaldosteronism

Diabetic nephropathy

Acute GN, I.e. nephritic syndrome
[Tubulointerstitial nephropathies, eg. Sickle cell
disease] — mostly tubular damage

Drugs, e.g. NSAIDS, COX-2 inhibitors,
cyclosporin, tacrolimus

Hereditary causes, e.g.
pseudohypoaldosteronism type Il
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The Juxtaglomerular Apparatus,
Intra-Renal Source of Renin

&)

MD, macula densa
AA, afferent arteriole

EA, efferent arteriole

GC.: granular cell

SMC: smooth muscle cell

Schnermann & Briggs, JCI, 1999 b
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2CTI°

- m - COX-2

e || @) 58 and

Densa ParaCrl ne
Regulation of
PGE;/PGIZ R en | N
) TN . Release by
oy B, the JGA
Juxtaglomerular
Cell + cAMP/PKA —= T renin
- /

Harris and Breyer, AJP-Renal, 281, 2001



NSAIDs

and

Type IV

RTA
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DAYS| 5 6 7 8 9 10 11 12 13 14 15 16 19
kND@lNl OFF _INDOCIN [ INDOCIN CHALLENGE
Serum 607
K+ +
(mEg/1I) TG .. K
404  NORMAL| RANGE ‘\,\./‘\‘_\._ﬂ_.
PRA 10 //
(ng/ml/hr)
54 PRA
=
Plasma 1004
Aldo Plasma
(ng/100mI) 50;
103 aldo
Urine 250+
Aldo
1504 .
(ug/24hr) Urine
504
o] aldo
: 6004 .
Urine Urlne
ng r V20000
200 PGE,

Tan et al, Ann Int Med, 90, 1979
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Adrenal Aldosterone Release due
to T[K*] is Modulated by ANG-II

300 -
S -
= ~ 250+
B 2
o 9
& O 200-
S % 5K
@ = 150 2K
o £
2 E 100-
3 3
B =~ 50- o
- §
e,.———
Aldo release by 0 — T T T T T
adrenal cells, 0 -1 -10 -9 -8 -7
in response to Log [ANG 11} (M)

Kof5vs.2mM Chen et al, AJP-Renal, 276, 1999 *
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An Intact Adrenal RAS is Required
For the Response to Hyperkalemia

Aldo release
from perfused
adrenals,
NacCl-restricted
animals

TAKE-HOME
MESSAGE:

RAS inhibition
blunts adrenal
response to hyperK

3001

N

S

o
1

N
o
o

aldosterone [pmol/10 min]
S o
S o

N
o
1

0

*

(] control
<

baseline captopril saralasin losartan

Mazzocchi et al, AJP-Renal, 278, 2000
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Hyporeninemic Hypoaldo in the Elderly:
Correlation with Increased ANP

Age K" Creat Aldo PRA ANP

(uM)  (pM)  (ng/L/s) — (pM)
Patients:
81 5.7 265 <65 0.14 3000
94 4.9 88 302 0.06 321
83 5.3 71 202 0.58 1107

84 5.1 115 83 0.06 387

Mean :83 ' 5.3 14/ 216 0.34 1186

Healthy:

Clark et al, J Clin Endocrinol Metab. 1992 Aug;75(2):399-403. *
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Aldo Response to
K-ClI Infusion
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ANP Blunts the  _ SR i
TAldo from TK*  § e
$ . e e
) :
Healthy young T
subjects, infused ¢ .|
. ® 1 1
With K +/- ANP 3 OO
2 S
R e SRR
0

Clark et al, J Am Soc Nephrol. 1995 Nov;6(5):1459-62 28



and Hyperkalemia

ANP, systemic and
affect renal renin re
release, I.e. remem

TAKE HOME MESSAGES:
'he Renin-Angiotensin-Aldosterone AXIs

ocal RAS, and prostaglandins all
ease AND adrenal aldosterone

ner the adrenal effect

The role in hyporeninemic hypoaldosteronism of volume
expansion and T ANP/BNP

— J renal renin and 4 adrenal aldosterone release

)

\
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Question #1

You are referred a 17 year-old high school student for
management of high blood pressure. He has not seen
a physician since childhood, is on no medications.

He denies drug abuse, including cocaine.

~H: His 50 year-old father is also hypertensive, with a
nistory of renal stones.

Since you have access to a clinical research center, you
admit the father and son for biochemical profiling while
iIngesting a diet with rigorously controlled salt content.

30



Parameter Son Father

Dietary Na* = 200 10 200 10
(mmol/day)

BP 150/90 110/64 142/90  110/70

K" 6.0 4.5 5.0 4.6

CI 119 102 114 102

HCO3 18 25 21 27

oH 733 741 736 7.38

PRA 0.2 0.3 0.4 2.6

Aldo 15 01 13 41

ANP 43 9 32 14

FEk (%) basal = 7.8 10.3 8.5 7.8

FEk (%) 8.1 33.8 8.2 15.0
saline
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Which of the following Is the most
appropriate therapy for this patient?

A. Aggressive K restriction

B. NacCl restriction to 10 mEqu/day
C. Nifedipine

D. Amiloride

E. Hydrochlorothiazide



Pseudohypoaldosteronism Type |l (PHA-II)
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Also known as Gordon’s syndrome or the “chloride-
shunt” disorder, familial hypertension with hyperK

The “mirror image” of Gitelman’s syndrome due to loss

of function in the thiazide-sensitive NaCl cotransporter:

- hypertension

- hyperkalemic acidosis

- suppression of plasma renin, aldosterone
- hypercalciuria, nephrolithiasis

Responsive to thiazides
Autosomal dominant transmission, rarely recessive;
five different genes, four characterized

33
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Human Hypertension Caused by
Mutations in WNK Kinases

Frederick H. Wilson,? Sandra Disse-Nicodéme,?*

Keith A. Choate,’* Kazuhiko Ishikawa,’* Carol Nelson-Williams,"
Isabelle Desitter,? Murat Gunel,’ David V. Milford,>
Graham W. Lipkin,* Jean-Michel Achard,” Morgan P. Feely,®
Bertrand Dussol,” Yvon Berland,” Robert J. Unwin,®
Haim Mayan,” David B. Simon,’ Zvi Farfel,? Xavier Jeunemaitre,*
Richard P. Lifton'y

SCIENCE VOL 293 10 AUGUST 2001
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WNK1 and WNK4 are Homologous
Serine/Threonine Kinases

Coils
B Kinase _— ~~_
WNK4 i I
T AN
76% 1D S52% 1D 31% 1D
2z, A RS

WNK1 [ ) )




WNK1 is Expressed in the DCT and CCD

B) WNK1 (red) and Agp-2 (green)
D) WNK1 (red) and NCC (green)
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WNK4 Is Expressed in the DCT and CCD

B) Co-expression of WNK4 (red) and Agp-2 (green)
D) Co-expression of WNK1 (red) and NCC (green)

37
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PHA-II Mutations in the WNK4 Kinase
Abrogate Its Inhibition of the Thiazide-
Sensitive Na-Cl Cotransporter

-
=Y
o

-t
N
o
-I]
—
—

22Na* Uptake (% of NCCT alone)

o

NCCT — Na-Cl cotransporter

NS
NS
p <1x10°

80 -

60 -

40 -

20 -

NCCT NCCT NCCT NCCT
WNK4  WNK4 WNK4
(WT) (kinase- (Q562E)
dead)

Choate et al, PNAS, 100, 2003
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The Aldosterone Paradox: Integrated Distal
Na* and K* Transport
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T in Ang-1l by hypokalemia/K* restriction — inhibition of
apical secretory K* channels (ROMK)
K*-dependent regulation of the NCC Na*-CI-

cotransporter in DCT — Na* delivery to principal cells.
 suppression of NCC by hyperkalemia/K* loading
« Ang-ll-dependent Tof NCC in hypokalemia/K* restriction.

K*-dependent modulation of WNK kinases.
Aldo-dependent induction of electroneutral Na*-Cl-
transport (coupled Na*-anion exchangers) in the CCD —
no effect on electrogenic K* secretion.

Electroneutral, ENaC-independent K* secretion, ?
primarily in intercalated cells.

39



Hypokalemia - Causes

Pseudohypokalemia — leukocytosis, with uptake
of K* by WBCs, e.g. in AML

Redistribution

e Insulinopenia —» DKA

« Sympathomimetics

* 3,-agonists, dopamine, theophyline

- Hypokalemic periodic paralysis, incl. thyrotoxic

« Acute anabolic state — pernicious anemia
Non-renal loss — skin, stomach (suctioning),

Intestine (diarrhea, laxatives, K* secretion)

)

\
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Question #2

You are asked to evaluate a female patient with
intestinal pseudo-obstruction (Ogilvie’'s syndrome), with
diarrhea and profound hypokalemia.

Meds include metoprolol, risperidone, insulin

Exam and Imaging notable for signs of colonic

distension.
L aboratory Studies:
Nat 151 BUN 30
K* 2.5 creatinine 1.5
ClI- 115 TTKG 3
HCO, 15 stool K* 100 mEqu/kg

stool Na* 10 mEqu/kg

)
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Which of the following is the most likely
cause of this patient’s hypokalemia?

A. Ischemic bowel

B. C diff colitis

C. Activation of colonic K* secretion
D. Osmotic diarrhea

E

. Sympathetic activation with
redistributive hypokalemia



Ogilvie’s Syndrome and Hypokalemia
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There is an association between (Ogilvie’s
syndrome) and hypokalemia due to secretory
diarrhea with an abnormally high K* content.
In one patient with concomitant ESRD,
Immunohistochemistry revealed massive
upregulation of the apical BK channel
throughout the surface-crypt axes. ? Active
stimulation by catecholamines induced by
colonic pseudo-obstruction.

43
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Renal Loss and Hypokalemia

Drugs Tubular damage

« Diuretics  ATN

 Antibiotics » Cisplatin,

—Non-reabsorbable aminoglycosides,
anions, e.g. Penicillin amphotericin

Aldosterone excess Intrinsic renal transport
Bicarbonaturia defects
Magnesium deficiency — - Liddle’s syndrome
Inhibition of muscle Na/K-  Bartter’s syndrome
ATPase and 4 Mg?2*- - Gitelman’s syndrome

dependent block of ROMK  « Hereditary dRTA
—7T distal K* excretion

)
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Hypokalemia and Hypertension

Common
« aldosterone-producing adenoma, bilateral
adrenal hyperplasia
< Common
- familial hyperaldosteronism, including GRA
(Glucocorticoid remedial aldosteronism)
 adrenocortical carcinoma
 renovascular disease
- Liddle’s syndrome
« 11HS2 inhibition/deficiency —
licorice/S.A.M.E.
« Ectopic ACTH

)
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Mutated K* channel
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Nat, K+-ATPase Na*,Ca2+-ATPase
+ 2
Na Ca™, Volatge gated

<
All S Ca2* channel
O

Ca2+-ATPase

) r9~ Nat Ca
)i [
y /===~ ca*
Depolarization . - g
M n - - o
e MC2R
—I CYP11B2 |-| T Aldosterone

Nat, K*-ATPase  Nat*Ca2*-ATPase
Nat Ca2+

Volatge gated
>< Ca?* channel
AT1R \ ' Ca2+-ATPase
+ 4 : Ca
K* channel / ‘ ('
Hyperpolarization ACTH
K+
— MC2R
—cverrez L] HovPiel—1A|dosteron

Chimeric gene

Mutated Na* Ca?*-ATPase
Nat, K+-ATPase Na+ Ca2+
“

(GIRK4)
Depolarization

Ca
Ca2+ 7
s - - - i
+
P MC2R
—{cvpitBz| T Aldosterone

Volatge gated

“ ( 2+ channel
\ Mutated Ca2+-ATPase

+ y /." Ca2+

A) Physiological activation of

aldo synthesis by ATII

B) Aldo synthesis in G
glucocorticoid remedia
hyperaldosteronism (F

RA,

H-1)

C) Genetic abnormalities In
membrane transport proteins
In FH-I1l (GIRK4/KCNJ5)

and/or adrenal adenomas

Eur J Endocrinol 2013, 169, R15-R25
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A B

k' channels ATIR X channels Voltage-gated

‘TASK‘, GlRK'v) Vw.AEQAEa:w (TASKS GIRKs. ) Ca channel
3-’ et "‘&9,' C{é"ch:mncl ‘ r!
e\ =
' < Y - Na'
\ ; 4 I Ca**-ATPase l Cn ATPase
Na‘ X*“-ATPase A - Na* xX* A”’.‘nr ; \
- K T . \
Hyperpolarization ./ e — Depolarization. _,. J
Na* - u. / ‘[Ca j A ‘:"
— o P
__ e - Aldosterone
C D
Mutated voltage
Mutas ATIR E’D'mgh" o ‘;c K* channels ATIR gated Ca'* channel
channels (GiRx4 dha e (TASKs, GIRKs._ )

(Cavl.3)

\ .¢ 4+t ‘ea "
Mutated oy
X ATP Mutat
oo C“ B NarkaTPase A &

Af as
.-
\&‘ Hyperpolarization

A,-". \|.' -'l"'| A (“"" Na' '_-" I.l P C

- e o
Yo v

. Aldosterone ~ RN ©  Aldosterone A

o
-

A) Zona glomerulosa cells are strongly hyperpolarized (-80 mV) due to K channel activity
B) Ang-ll depolarizes cells by inhibiting K channels and Na/K-ATPase, leading to
depolarization. Depolarization activates Ca?* channels, increasing intracellular Ca** and
activating CYP11B2 transcription to generate more aldo.

C) Acquired mutations in GIRK4/KCNJ5 induce Na* conductivity, depolarizing the cell.
Acquired mutations in Na/K-ATPase have the same effect.

D) Acquired mutations in calcium transport proteins increase intracellular Ca?*



Screening and Confirmatory Testing,
Primary Hyperaldosteronism

Aldosterone (PAC) to renin (PRA) ratio
« Check when normokalemic, [K*]>4.0 mEqu/L
- Beware of drug effects during evaluation, switch to
RAAS-neutral drugs (verapamil, alpha blockers,
hydralazine)
24 hour aldosterone secretion
Salt suppression testing
 Oral to >200 milliEqu/day for 3 days, followed by
PAC:PRA and 24 hr urine aldo
* IV saline, 2 liters/4 hours, pre- and post-PAC:PRA
Imaging +/- adrenal vein sampling (AVS)

)
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Positive case-finding test
PAC:PRA >20ng/dl per ng/ml per hour (555pmol/ per ng/ml per hour)
PLUS PAC =15ng/dl (416 pmal/)

|

Confirmatory testing
Sodium loading (oral, intravenous or fludrocortisonsg)

|

Adrenal CT
Unilateral nodule Normal, multinodular, unilateral
or bilateral enlargement
Module
AVS not size AVS not
required if <icm required if
patient is patient is not
aged =40 years a suitable
M?D nn-tlulg size SRR Venota a MR candidate for,
is =1cm AND or does not
nodule <10HU ‘ Lateralization No lateralization wish to undergo,
‘ : 1 surgery
Surgery Mineralocorticoid
receptor antagonist

)

\

Nature Clinical Practice Nephrology (2006) 2, 198-208



Conseqguences of Hyperkalemia

Excitable tissue — change in resting membrane
potential
« Cardiac, decreased myocardial conduction
velocity, TPR and TQRS and increased rate of
repolarization (T wave changes)
« Skeletal muscle — weakness, fatigue, paralysis
Kidney — decreased ability to secrete NH,* —>
acidosis

)

\
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Tall peaked

ﬁ /< T wave
/

Tall peaked

/ T wave

Loss of
P wave

Widened QRS
with tall T wave

Serum K+

0.5-6.5
6.5-7.5

7.0-8.0
8.0-10

ypical Electrocardiographic Features of Hyperkalemia

Major change
Tall peaked T waves
Loss of P waves
Widening of QRS
Sine wave,
ventricular arrhythmia,
asystole

52



Caveats:. ECGs and Hyperkalemia

Remember, “the first symptom of hyperkalemia
Is death.....”
ECG changes are not sensitive, particularly in
ESRD
Peaked T's in other disorders
Atypical ECGs

« Complete heart block

» Intraventricular conduction delays

* QRS axis shift

. Bru%ada sign - pseudo-RBBB and “coved”

ST

)
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Treatment of Hyperkalemia

Mechanism Duration
Stabilize membrane ' Calcium 10% Ca-gluconate, in. 30-60
potential 10 ml over 10 min. min
Cellular K* uptake | Insulin 10 U R with 50 ml in. 4-6 h

of D50, if BS<250

B2-agonist nebulized albuterol, 2-4 h
10 mg
K* removal Potassium Agent-specific hours ?
Binders

Hemodialysis Immediate
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A Plasma Potassium,

mmol/L
Hypertonic
E\I—“I\ Bicarbonate .
ol &= : Bicarb
P s Acutely
\ T\T\T_—T Epinephrine I n effect I Ve
—0.54 I\¥\I
s
. Y
—1.0 I\I\T I'”S““”/Qlucose
T\ Dialysis
—J. 65 T p=0.01 l

I |

0) 10 20 30 40 50 60
Duration of Treatment, min

| Blumberg et al, Am J Med, 85, 1988
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Sustained, Isotonic Bicarbonate Infusions are
Modestly Effective in ESRD

=)
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A Plasma potassium, mmol/iiter

~0.4

—0.8 -

~g.g

- ESRD patients.
~J mean [K] 6.0 mEqu/l,
\‘f . mean [HCO,] 17 mEqu/l
—

Hypertonic — isotonic
Infusion, 390 mmole
In 1190 ml

—

I ) L L
60 120 240 360

Duration of bicarbonate infusion, minutes

Blumberg et al, Kidney International, 42, 1992
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Insulin and Glucose

Threshold of >6.5 mEqu/L without ECG changes.
Recommended dose is 10 units of regular insulin
followed by 25 g of 50% glucose

Followed by 10% dextrose infusion at a rate of 50-
/5 ml/hour (to prevent hypoglycemia)

In hyperglycemic patients (glucose > 200-250 mg/dl)
iInsulin alone is enough

D50W alone should be avoided — hyperosmolality

can increase K*, primarily in predisposed patients
(e.g. DM with type IV RTA)



B,-Adrenergic Agonists (Inhaled)
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10-20 mg of nebulized albuterol in 4 ml of normal
saline, inhaled over 10 minutes

Hypokalemic effect starts in 30 minutes, peaks at 90
minutes and lasts for 2-6 hours

Reduces K* level by 0.5-1.0 mmol/L

Synergistic with insulin, but ineffective as the sole
agent in ESRD

Use with caution in ischemic HR, monitor HR closely
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Sodium Polystyrene Sulphate
(Kayexalate) Can Cause Bowel Necrosis
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SPS crystal, duodenum

> ¢ . JHEN < K4 2

'.ﬁ\ N RhG B . . \_'- g
Blas BESINSa Y 299
£ R, . W , ) il % : 1
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Concerns re Sodium Polystyrene
Sulphate (SPS)

)
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Slow onset of effect - SPS unnecessary in most
patients with acute hyperkalemia.

Intestinal necrosis due to SPS in sorbitol is often a fatal
complication, NOT restricted to post-op setting.

FDA advisory September, 2009 — do NOT administer
SPS with sorbitol.

Yet... SPS with sorbitol remains a very popular “reflex”
mechanism of therapy for hyperkalemia, and is often the
only formulation of SPS available.

Increasing reports and an animal model of necrosis w/o
sorbitol; it’s the SPS, sorbitol isn’t necessary for
necrosis.
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The Available Alternatives....

e NEW ENGLAND
JOURNAL of MEDICINE

ESTABLISHED IN 1812 JANUARY 15, 2015 VOL. 372 NO. 3

Patiromer in Patients with Kidney Disease and Hyperkalemia
Receiving RAAS Inhibitors

Matthew R. Weir, M.D., George L. Bakris, M.D., David A. Bushinsky, M.D., Martha R. Mayo, Pharm.D.,

Dahlia Garza, M.D., Yuri Stasiv, Ph.D., Janet Wittes, Ph.D., Heidi Christ-Schmidt, M.S.E., Lance Berman, M.D.,

and Bertram Pitt, M.D., for the OPAL-HK Investigators*

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Sodium Zirconium Cyclosilicate
in Hyperkalemia

David K. Packham, M.B., B.S., M.D., Henrik S. Rasmussen, M.D., Ph.D.,
Philip T. Lavin, Ph.D., Mohamed A. El-Shahawy, M.D., M.P.H.,
Simon D. Roger, M.D., Geoffrey Block, M.D., Wajeh Qunibi, M.D.,
Pablo Pergola, M.D., Ph.D., and Bhupinder Singh, M.D.
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Patiromer

Chief adverse event is hypomagnesemia (4.3%
Incidence of magnesium <1.2 mg/dL In
AMETHYST-DN)

Concerns re drug interactions, but only
documented for ciprofloxacin, metformin, and
thyroxine; can obviate If dosed 3 hours
between/before other drugs

Demonstrated to reduce circulating
aldosterone; ? role in managing aldosterone
breakthrough
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Sodium Zirconium Cyclosilicate (SZC, ZS-9)

Selective for K* and NH,* - no binding to magnesium
or calcium.
Assoclated increase in serum bicarbonate.

No drug interactions.
Rapid onset: After one 10-g dose serum [K*] declines

oy ~0.4 mEqu/L at 1 hour, by ~0.6 mmol per liter at 2
nours, and by ~0.7 mEqu/L at four hours.
May contribute to edema, presumably due to Na*

load.
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SZC in Hyperkalemic HD Patients

Mean serum potassium (mmol/L)
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Hemodialysis

The only therapy that can reliably normalize
hyperK within 4 hours.

Serum K* reaches a nadir at ~3 hours, but
removal continues to end of HD RXx.

The amount of K* removed depends on:
- type and surface area of the dialyzer
- blood flow rate
- dialysate flow rate
- dialysis duration
- serum:dialysate K* gradient




The Serum - Dialysate Gradient
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Dialysates with lower K* concentration are more
effective, but may lead to rebound hypertension
Dialysates with very low K* concentration (O or 1
mmol/L) should be used cautiously, given the risk of
arrhnythmia

Graded reduction in K* concentration is effective, with 4
arrnytnmia, and is the standard of care at BWH
Continuous cardiac monitoring is recommended when
using very low K* concentration dialysates
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Conseguences of Hypokalemia

Arrhythmias

Muscles — weakness,
paralysis, myopathy
Metabolic alkalosis
Insulin resistance

HYPERTENSION
Polydipsia, polyuria,
nephrogenic DI
Structural renal disease
— AKI, ESRD
Predisposition to

« Rhabdomyolysis

« Hepatic

encephalopathy



QTc and Serum [K*]
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Estimate the Deficit!

L in [K*] of
0.27 mM per
100 mEqu
deficit

[ —

1 ! S
400 50C 600 700 800

K" Deficit (mEq/'70Kg Body Wt)

0 100 20¢ 300

Pooled studies of K+ deprivation
Sterns et al, Medicine, 1981
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Treatment of Hypokalemia
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Look for sequelae — ECG, motor power, etc., —>
telemetry for ECG changes, symptomatic hypokalemia

requiring aggressive Rx
First replete magnesium

Usually oral therapy, preferably K-CI

Replete deficit over days, monitor [K*] g4-6h to monitor
RX and avoid transient hyperkalemia

V can be given safely at 10 mEqu/hour, but up to 40-
60 mEqgu/hr in a monitored setting — need central line, ?
preferably femoral

DO NOT USE DEXTROSE SOLUTIONS

s acute ¥ in K*, due to the induced insulin
release
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Question #3

32 yo Latin American male admitted with weakness
and a K of 2.0

HPI. The patient has been very healthy until 2
months PTA, when he developed leg weakness.
This weakness has fluctuated, and is more severe at
night-time. He denies drug abuse, laxative abuse, Is
on no medications.

ROS: no nausea, no vomiting or diarrhea.

SH: Taxi driver, married with one child

~H: 10 siblings, mother has DM, one sister has
thyroid disease.
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Physical Exam

Temp 97.2 bp 176/96 HR 102, RR 16

HEENT normal

JVP visible and not elevated, good peripheral pulses, no edema
S1, S2 normal, no murmurs

Abdomen — soft, non-tender, no organomegaly

Neuro — decreased DTRs, otherwise normal

)

\
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Na

Cl
HCO5
BUN
Creat
Glu
PO4
Ca

Alb
Posm
UOsm
UK

Admission:

139
2.0
105
26
11
0.6
145
1.2
3.8
1.3
3.8

290
590
10

5 months PTA:

143
3.8
107
29
16
1.0
136

8.8
1.9

TTKG = 2.0
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Which of the following is likely to be
abnormal in this patient?

A.
B.

C.

my

TSH level

Genetic sequence of the gene encoding the
Na/K-ATPase alpha-1 subunit

Genetic seguence of the gene encoding a
muscle-specific K* channel

A&C

A B&C
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Mutations in Potassium Channel Kir2.6
Cause Susceptibility to Thyrotoxic
Hypokalemic Periodic Paralysis

Devon P. Ryan,'214 Magnus R. Dias da Silva,21415 Tuck Wah Soong,*8 Bertrand Fontaine,®> Matt R. Donaldson,2:16
Annie W.C. Kung,® Wallaya Jongjaroenprasert,” Mui Cheng Liang,® Daphne H.C. Khoo,'° Jin Seng Cheah,? Su Chin Ho, ¢
Harold S. Bernstein,’" Rui M.B. Maciel,'2 Robert H. Brown, Jr.,’® and Louis J. Ptacek!.2:3.*

"Neuroscience Graduate Program

2Department of Neurology

SHoward Hughes Medical Institute

University of California, San Francisco, San Francisco, CA, 94158, USA

4lon Channel and Transporter Laboratory, National Neuroscience Institute, Singapore 308433, Republic of Singapore

5INSERM, Université Pierre et Marie Curie-UPMC, UMRS 546, and Assistance Publique-Hopitaux de Paris, Centre de Référence des
Canalopathies Musculaires, Groupe Hospitalier Pitié-Salpétriere, 75013 Paris, France

6Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China [144fs
"Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand

8Department of Physiology /
9Department of Medicine

Yong Loo Lin School of Medicine, National University of Singapore, Singapore 308433, Republic of Singapore

10Department of Clinical Research, Singapore General Hospital, Singapore 169608, Republic of Singapore

1Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0130, USA

2Department of Medicine, Division of Endocrinology, Universidade Federal de Sao Paulo, Sdo Paulo 04039-032, Brazil

18Massachusetts General Hospital, 16th Street, Navy Yard, Charlestown, MA 02129, USA

14These authors contributed equally to this work

15Present address: Department of Biochemistry, Universidade Federal de Sao Paulo, Sdo Paulo 04044-020, Brazil

16Present address: Department of Dermatology, Texas Tech University, Lubbock, TX 79409, USA

*Correspondence: ljp@ucsf.edu

DOI 10.1016/j.cell.2009.12.024

Cell 740, 88-98, January 8, 2010 ¢

K366R N

Point mutations in a muscle-specific, thyroid-
Induced K* channel detected in multiple un-
related patients with TPP, primarily non-Asian in

origin. R399{ %(

Q407X

— T354M




)

\

Use of the TTKG In Hypokalemic Paralysis
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Response of Serum K* and Phosphate
to High-Dose Propranolol in TPP
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TAKE HOME MESSAGES

Regulation of renal renin release and
adrenal aldosterone release.

The aldosterone paradox.

New developments in
hyperaldosteronism and thyrotoxic
periodic paralysis.

Treatment issues In hypokalemia.
New K* binders for hyperkalemia.
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